Word Processing in Groups

Eric Bailey

Contents

Part 1. An Introduction to Automatic Groups 5
Chapter 1. Finite State Automata, Regular Languages and PredicateCalculus7

1. Languages and Regular Languages 7
Glossary 9

Part 1

An Introduction to Automatic Groups

CHAPTER 1

Finite State Automata, Regular Languages and Predicate Calculus

1. Languages and Regular Languages

- An alphabet A is nothing more than a finite set.
- If A is the alphabet over lowercase letters, "automaton" is a string over A with $n=9$.
- If ω is a string $\{1, \ldots, n\} \rightarrow A$, we call n the length of ω and we denote it by $|\omega|$.
- An element of a A is called a letter.
- A string over the alphabet A is a finite sequence of letters, i.e. an integer $n \geq 0$ and a mapping $\{1, \ldots, n\} \rightarrow A$.
- If $n=0$, the domain is the nullset and there is a unique string, the nullstring, generally denoted ϵ, or sometimes ϵ_{A} to distinguish the nullstring over A, since ϵ might be a letter in A, e.g. Definition 1.1.3.
- The set of all strings over the alphabed A is denoted A^{*}.
- With the operation of concatenation, the set A^{*} of strings over A forms a monoid, with identity element ϵ.
$-A^{*}$ is the free monoid or semigroup on the set of generators
- All semigroups considered in this book will be monoids, so the words are used interchangeably.
- Given two strings $\omega:\{1, \ldots, n\} \rightarrow A$ and $\tau:\{1, \ldots, m\} \rightarrow$ $A\}$, the concatenation $\omega \tau$ of ω and τ is defined to be the string $\{1, \ldots, m+n\} \rightarrow A$ given by $(\omega \tau)(i)=\omega(i)$ if $1 \leq i \leq n$ and $(\omega \tau)(i)=\tau(i-n)$ if $n+1 \leq i \leq n+m$.

Glossary

alphabet: nothing more than a finite set. 7, 9
binary operation: TODO: write description. 9
concatenation: TODO: write description. 7
identity element: a special type of element of a set, with respect to a binary operation on that set, which leaves other elements unchanged when combined. 7
length: TODO: write description. 7
letter: an element of an alphabet. 7, 9
monoid: a set with an associative multiplication and an identiy. 7
nullstring: a unique string over an alphabet A where $n=0$ and the domain is the nullset, generally denoted e. 7. 9
semigroup: a set with an associative multiplication. 7
string: a finite sequence of letters, i.e. an integer $n \geq 0$ and a mapping $\{1, \ldots, n\} \rightarrow A$. 7, 9

