Word Processing in Groups

Eric Bailey

Contents

Part 1. An Introduction to Automatic Groups	5
Chapter 1. Finite State Automata, Regular Languages and Predicate	
Calculus	7
1. Languages and Regular Languages	7
Glossary	9

Part 1

An Introduction to Automatic Groups

CHAPTER 1

Finite State Automata, Regular Languages and Predicate Calculus

1. Languages and Regular Languages

- An *alphabet A* is nothing more than a finite set.
 - If A is the *alphabet* over lowercase letters, "automaton" is a *string* over A with n = 9.
 - If ω is a *string* $\{1, ..., n\} \to A$, we call *n* the *length* of ω and we denote it by $|\omega|$.
- An element of a *A* is called a *letter*.
- A *string* over the *alphabet* A is a finite sequence of *letters*, i.e. an integer n ≥ 0 and a mapping {1, ..., n} → A.
- If n = 0, the domain is the nullset and there is a unique string, the *nullstring*, generally denoted ϵ , or sometimes ϵ_A to distinguish the *nullstring* over A, since ϵ might be a *letter* in A, e.g. Definition 1.1.3.
- The set of all *strings* over the *alphabet* A is denoted A^* .
 - With the operation of *concatenation*, the set A^* of *strings* over A forms a *monoid*, with *identity element* ϵ .
 - A* is the free monoid or *semigroup* on the set of generators
 A.
- All *semigroups* considered in this book will be *monoids*, so the words are used interchangeably.
- Given two strings ω : $\{1, ..., n\} \rightarrow A$ and τ : $\{1, ..., m\} \rightarrow A$ }, the concatenation $\omega \tau$ of ω and τ is defined to be the string $\{1, ..., m + n\} \rightarrow A$ given by $(\omega \tau)(i) = \omega(i)$ if $1 \le i \le n$ and $(\omega \tau)(i) = \tau(i n)$ if $n + 1 \le i \le n + m$.

Glossary

alphabet: nothing more than a finite set. 7, 9

binary operation: TODO: write description. 9

concatenation: TODO: write description. 7

identity element: a special type of element of a set, with respect to a *binary operation* on that set, which leaves other elements unchanged when combined. 7

length: TODO: write description. 7 **letter:** an element of an *alphabet*. 7, 9

monoid: a set with an associative multiplication and an identiy. 7

nullstring: a unique *string* over an *alphabet* A where n = 0 and the domain is the nullset, generally denoted ϵ . 7, 9

semigroup: a set with an associative multiplication. 7 **string:** a finite sequence of *letters*, i.e. an integer $n \ge 0$ and a mapping $\{1, ..., n\} \rightarrow A$. 7, 9