Copyright | (c) Eric Bailey 2020-2024 |
---|---|
License | MIT |
Maintainer | eric@ericb.me |
Stability | experimental |
Portability | POSIX |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
Some sequences from OEIS
Synopsis
- a000040 :: (Bits a, Enum (Prime a), Integral a, UniqueFactorisation a) => Infinite a
- a000078 :: Integral a => Infinite a
- a000111 :: Integral a => Infinite a
- a000182 :: Integral a => Infinite a
- a000217 :: Integral a => a -> a
- a000290 :: (Enum a, Num a) => Infinite a
- a000364 :: Integral a => Infinite a
- a002378 :: Integral a => a -> a
- a003313 :: Natural -> Int
- a007947 :: UniqueFactorisation a => a -> a
- a007953 :: Integral a => a -> a
- a027748 :: (Enum a, UniqueFactorisation a) => Infinite a
- a034705 :: Infinite Int
- a051885 :: Integral a => a -> a
- a056924 :: (Integral a, UniqueFactorisation a) => a -> a
- a060735 :: UniqueFactorisation a => Infinite a
- a076314 :: Integral a => a -> a
- a082949 :: Infinite HybridInteger
- a111251 :: Infinite Integer
- a204692 :: Integral a => a -> a
- a211264 :: Integral a => a -> a
- digitSum :: Integral a => a -> a
- distinctPrimeFactors :: UniqueFactorisation a => a -> NonEmpty a
- squares :: (Enum a, Num a) => Infinite a
- triangularNumbers :: Integral a => Infinite a
Documentation
a000040 :: (Bits a, Enum (Prime a), Integral a, UniqueFactorisation a) => Infinite a Source #
The prime numbers, i.e. A000040.
a000111 :: Integral a => Infinite a Source #
Euler up/down numbers: e.g.f. \(\sec(x) + \tan(x)\), i.e. A000111.
a000182 :: Integral a => Infinite a Source #
Tangent (or "Zag") numbers: e.g.f. \(\tan(x)\), also (up to signs) e.g.f. \(\tanh(x)\), i.e. A000182.
a000364 :: Integral a => Infinite a Source #
Euler (or secant or "Zig") numbers: e.g.f. (even powers only) \(\sec(x) = \frac{1}{\cos(x)}\), i.e. A000364.
a002378 :: Integral a => a -> a Source #
Oblong (or promic, pronic, or heteromecic) numbers: \(a002378(n) = n(n+1)\), i.e. A002378.
a007947 :: UniqueFactorisation a => a -> a Source #
Largest squarefree number diving \(n\): the square free kernel of \(n\), \(\text{rad}(n)\), radical of \(n\), i.e. A007947.
a027748 :: (Enum a, UniqueFactorisation a) => Infinite a Source #
Irregular triangle in which first row is \(1\), \(n\)-th row \((n > 1)\) lists distinct prime factors of \(n\), i.e. A027748.
See distinctPrimeFactors
.
a056924 :: (Integral a, UniqueFactorisation a) => a -> a Source #
Number of divisors of \(n\) that are smaller than \(\sqrt{n}\), i.e. A056924.
\(a056924(n) = N(4n)\) from Project Euler Problem 174: Hollow Square Laminae II.
a060735 :: UniqueFactorisation a => Infinite a Source #
a076314 :: Integral a => a -> a Source #
\(a076314(n) = \lfloor \frac{n}{10} \rfloor + (n \bmod 10)\), i.e. A0076314.
a082949 :: Infinite HybridInteger Source #
Numbers of the form \(p^{q}q^{p}\), with distinct primes \(p\) and \(q\), i.e. A082949.
a111251 :: Infinite Integer Source #
Numbers \(k\) such that \(3k^2 + 3k + 1\) is prime, i.e. A111251.
a204692 :: Integral a => a -> a Source #
The number of base-10 bouncy numbers below \(10^{n}\), i.e. A204692.
a211264 :: Integral a => a -> a Source #
Number of integer pairs \((x,y,)\) such that \(0 < x < y \leq n\) and \(xy \leq n\), i.e. A211264.
distinctPrimeFactors :: UniqueFactorisation a => a -> NonEmpty a Source #
The distinct prime factors of a given number.
>>>
distinctPrimeFactors 504
2 :| [3,7]