Copyright | (c) Eric Bailey 2020-2025 |
---|---|
License | MIT |
Maintainer | eric@ericb.me |
Stability | experimental |
Portability | POSIX |
Safe Haskell | None |
Language | GHC2021 |
Math.OEIS
Description
Some sequences from OEIS
Synopsis
- a000010 :: (Integral a, UniqueFactorisation a) => Infinite a
- a000040 :: (Bits a, Enum (Prime a), Integral a, UniqueFactorisation a) => Infinite a
- a000078 :: Integral a => Infinite a
- a000111 :: Integral a => Infinite a
- a000120 :: Infinite Int
- a000182 :: Integral a => Infinite a
- a000203 :: (UniqueFactorisation a, Integral a, GcdDomain a) => Infinite a
- a000217 :: Integral a => a -> a
- a000285 :: Num a => Infinite a
- a000290 :: (Enum a, Num a) => Infinite a
- a000312 :: Integral a => Infinite a
- a000326 :: Integral a => a -> a
- a000330 :: Integral a => a -> a
- a000364 :: Integral a => Infinite a
- a000384 :: Integral a => a -> a
- a000537 :: Integral a => Infinite a
- a001065 :: (UniqueFactorisation a, Integral a, GcdDomain a) => Infinite a
- a001142 :: (Integral a, GcdDomain a) => Infinite a
- a001913 :: (Bits a, Enum (Prime a), Integral a, UniqueFactorisation a) => Infinite a
- a002034 :: (Integral a, UniqueFactorisation a) => Infinite a
- a002088 :: (Integral a, UniqueFactorisation a) => Infinite a
- a002109 :: Integral a => Infinite a
- a002326 :: Integral a => Infinite a
- a002378 :: Integral a => a -> a
- a003313 :: Natural -> Int
- a004185 :: Infinite Integer
- a005101 :: (UniqueFactorisation a, Integral a, GcdDomain a) => Infinite a
- a005252 :: Integral a => Infinite a
- a007318 :: (Integral a, Semiring a) => Infinite a
- a007947 :: UniqueFactorisation a => a -> a
- a007953 :: Integral a => a -> a
- a013928 :: (Integral a, UniqueFactorisation a) => Infinite a
- a015614 :: (Integral a, UniqueFactorisation a) => Infinite a
- a027748 :: (Enum a, UniqueFactorisation a) => Infinite a
- a034705 :: Infinite Int
- a048260 :: (UniqueFactorisation a, Integral a, GcdDomain a) => Infinite a
- a049690 :: (Integral a, UniqueFactorisation a) => Infinite a
- a051885 :: Integral a => a -> a
- a056924 :: (Integral a, UniqueFactorisation a) => a -> a
- a057627 :: (Integral a, UniqueFactorisation a) => Infinite a
- a060735 :: UniqueFactorisation a => Infinite a
- a072389 :: Integral a => Infinite a
- a076314 :: Integral a => a -> a
- a082949 :: Infinite HybridInteger
- a111251 :: Infinite Integer
- a161680 :: Integral a => a -> a
- a204692 :: Integral a => a -> a
- a211264 :: Integral a => a -> a
- digitSum :: Integral a => a -> a
- distinctPrimeFactors :: UniqueFactorisation a => a -> NonEmpty a
- hexagonalNumbers :: Integral a => Infinite a
- isPentagonal :: Integral a => a -> Bool
- pentagonalNumbers :: Integral a => Infinite a
- squarePyramidalNumbers :: Integral a => Infinite a
- squares :: (Enum a, Num a) => Infinite a
- triangularNumbers :: Integral a => Infinite a
Documentation
a000010 :: (Integral a, UniqueFactorisation a) => Infinite a Source #
Euler totient function \(\phi(n)\): count numbers \(1 \le k \le n\) such that \(k\) is coprime with (n), i.e., A000010.
a000040 :: (Bits a, Enum (Prime a), Integral a, UniqueFactorisation a) => Infinite a Source #
The prime numbers, i.e., A000040.
a000111 :: Integral a => Infinite a Source #
Euler up/down numbers: e.g.f. \(\sec(x) + \tan(x)\), i.e. A000111.
a000182 :: Integral a => Infinite a Source #
Tangent (or "Zag") numbers: e.g.f. \(\tan(x)\), also (up to signs), e.g., \(\tanh(x)\), i.e., A000182.
a000203 :: (UniqueFactorisation a, Integral a, GcdDomain a) => Infinite a Source #
The sum of the divisors of \(n\), i.e., A000203.
a000217 :: Integral a => a -> a Source #
Triangular numbers: \(T_{n} = \frac{n(n+1)}{2}\), i.e., A000217.
a000326 :: Integral a => a -> a Source #
Pentagonal numbers: \(P_{n} = \frac{n(3n-1)}{2}\), i.e., A000326.
a000330 :: Integral a => a -> a Source #
Square pyramidal numbers: \(a(n) = 0^2+1^2+2^2 + \dotsb + n^2 = \frac{n(n+1)(2n+1)}{6}\), i.e., A000330.
a000364 :: Integral a => Infinite a Source #
Euler (or secant or "Zig") numbers: e.g.f. (even powers only) \(\sec(x) = \frac{1}{\cos(x)}\), i.e., A000364.
a000537 :: Integral a => Infinite a Source #
Sum of first \(n\) cubes; or \(n\)-th triangular number squared, i.e. A000537.
a001065 :: (UniqueFactorisation a, Integral a, GcdDomain a) => Infinite a Source #
Aliquot sum of \(n\), i.e., A001065.
a001142 :: (Integral a, GcdDomain a) => Infinite a Source #
Products of rows of Pascal's triangle, i.e., A001142.
a001913 :: (Bits a, Enum (Prime a), Integral a, UniqueFactorisation a) => Infinite a Source #
Full reptend primes, i.e., A001913.
a002034 :: (Integral a, UniqueFactorisation a) => Infinite a Source #
Kempner numbers: smallest positive integer \(m\) such that \(n\) divides \(m!\), i.e., A002034.
a002326 :: Integral a => Infinite a Source #
Multiplicative order of \(2 \bmod{2n + 1}\), i.e., A002326.
a002378 :: Integral a => a -> a Source #
Oblong (or promic, pronic, or heteromecic) numbers: \(a002378(n) = n(n+1)\), i.e., A002378.
a004185 :: Infinite Integer Source #
Sort the digits of \(n\) in ascending order, removing any zeros, i.e., A004185.
a005101 :: (UniqueFactorisation a, Integral a, GcdDomain a) => Infinite a Source #
Abundant numbers (sum of divisors of \(n\) exceeds \(2n\), i.e. A005101.
a005252 :: Integral a => Infinite a Source #
\(a(n) = \sum_{k=0}^{\lfloor \frac{n}{4} \rfloor} \binom{n-2k}{2k}\), i.e., A005252.
a007318 :: (Integral a, Semiring a) => Infinite a Source #
Pascal's triangle read by rows: \(\binom{n}{k}\) for \(0 \le k \le n\), i.e., A007318.
a007947 :: UniqueFactorisation a => a -> a Source #
Largest squarefree number diving \(n\): the square free kernel of \(n\), \(\text{rad}(n)\), radical of \(n\), i.e., A007947.
a013928 :: (Integral a, UniqueFactorisation a) => Infinite a Source #
Number of (positive) squarefree numbers \(< n\), i.e., A013928.
a027748 :: (Enum a, UniqueFactorisation a) => Infinite a Source #
Irregular triangle in which first row is \(1\), \(n\)-th row \((n > 1)\) lists distinct prime factors of \(n\), i.e. A027748.
See distinctPrimeFactors
.
a056924 :: (Integral a, UniqueFactorisation a) => a -> a Source #
Number of divisors of \(n\) that are smaller than \(\sqrt{n}\), i.e. A056924.
\(a056924(n) = N(4n)\) from Project Euler Problem 174: Hollow Square Laminae II.
a057627 :: (Integral a, UniqueFactorisation a) => Infinite a Source #
Number of nonsquarefree numbers not exceeding \(n\), i.e., A057627.
a060735 :: UniqueFactorisation a => Infinite a Source #
a076314 :: Integral a => a -> a Source #
\(a076314(n) = \lfloor \frac{n}{10} \rfloor + (n \bmod 10)\), i.e. A0076314.
a082949 :: Infinite HybridInteger Source #
Numbers of the form \(p^{q}q^{p}\), with distinct primes \(p\) and \(q\), i.e., A082949.
a111251 :: Infinite Integer Source #
Numbers \(k\) such that \(3k^2 + 3k + 1\) is prime, i.e. A111251.
a204692 :: Integral a => a -> a Source #
The number of base-10 bouncy numbers below \(10^{n}\), i.e., A204692.
a211264 :: Integral a => a -> a Source #
Number of integer pairs \((x,y,)\) such that \(0 < x < y \leq n\) and \(xy \leq n\), i.e., A211264.
distinctPrimeFactors :: UniqueFactorisation a => a -> NonEmpty a Source #
The distinct prime factors of a given number.
>>>
distinctPrimeFactors 504
2 :| [3,7]